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Unfolding of the period-two bifurcation in a fiber laser pumped with two modulation tones
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The effect of a small second frequency component on a pump modulated neodymium fiber laser is investi-
gated experimentally and theoretically. This term, whose frequency is exactly half the primary driver, incites
an unfolding of the attractor. It breaks the period twopitchforkbifurcation and splits the period one orbit. The
modification of the bifurcation diagram is studied analytically by employing a map derived from the classB
laser rate equations. We determine specific conditions and scaling laws for this phenomenon. Our analytical
predictions are in good agreement with recorded experimental data.@S1063-651X~97!02307-6#

PACS number~s!: 42.65.Sf, 42.55.Wd, 05.45.1b
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I. INTRODUCTION

ClassB lasers@1# that are modulated either through th
pump or through intracavity losses have often been used
investigations of nonlinear dynamics in optical systems. O
such system, an electro-optic modulated CO2 laser, was
originally used to experimentally observe chaos@2#. Among
the impressive array of other research, acousto-optic
modulated CO2 lasers have also been used to study multis
bility @3# and measure Floquet multipliers by targeting u
stable periodic orbits@4#. Potential applications of this re
search include the stabilization of unstable steady state
lasers@5# and the use of chaotic signals for communicati
applications@6,7#.

A topic of exceptional relevance is the behavior of no
linear systems at the period two~P2! and higher period bi-
furcation points. Typically, the bifurcation parameter is t
amplitude of the 2p/v periodic modulation term. As the
system approaches the bifurcation point, stochastic and
terministic influences can be strongly amplified, as sugge
by Wiesenfeld and McNamara@8#. This idea was subse
quently tested in a NMR laser@9#. Recent investigations in
corporated loss modulated CO2 lasers with a driving fre-
quencyv, and a signal frequency atv/2 @10–12#. These
investigations yielded insights in the~de!amplification of the
v/2 frequency component of the Fourier spectra. Additio
ally, it is found that a22/3 scaling law exists between th
gain of thev/2 frequency component and the amplitude
the signal frequency just below the P2 bifurcation point. T
use of anv/2 component to control chaos has also be
investigated theoretically and experimentally@13–17#.

This natural relation of nonlinear systems with their res
nance frequencies remains a source of insightful studies
this paper we continue the investigation of periodic pert
bations. We consider a 2p/v periodic pump modulated fibe
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laser and investigate the effect a second smallp/v periodic
modulation component has at the P2 bifurcation point. T
term has a strong amplification effect on the P2 pitchfo
bifurcation@18# and allows control of the P2 instability@19#.
We present experimental data obtained from time dom
measurements that shows how the P2 bifurcation poin
affected. We also show that a map derived from the cl
B laser rate equations accurately predicts such behav
Though this map was initially derived for a loss modulat
classB laser @20#, we find that the pump modulated cas
behaves similarly. Consequently, we can expect that
pump modulated classB laser should be similar to the los
modulated case. Our results are in agreement with the pr
ous studies of two frequency loss modulated CO2 lasers
@10,11#.

The response of the driven fiber laser can be studied
merically by a two polarization model@21,22# and its rel-
evance for two tone modulation experiments is currently
ing investigated. Particular attention is devoted to the glo
changes of the bifurcation diagram~shifts of bifurcation
points, periodic windows, crises! resulting from the second
modulation. These are specific to the fiber laser and dep
on the laser parameters@23#. In contrast, we concentrate o
the changes of the bifurcation diagram near the first P2
furcation point. Our objective is to determine analytica
and verify experimentally all bifurcation effects that are i
troduced by the additionalv/2 modulation. Specifically, our
analysis leads to simple scaling laws describing the chan
of the bifurcation points and the effect of the relative pha
between thev and thev/2 modulations. Because our theo
is a local theory, our results are relevant for a large class
periodically modulated lasers as well as other periodica
forced nonlinear oscillators.

In order to analyze the bifurcation problem both quali
tively and quantitatively, we consider the equations of a cl
B laser. We then derive equations for a map that allow
simple analytical description of the P2 bifurcation and t
effect of thev/2 component. These results compare rema
ably well with our experimental observations and clarify pr
vious observations based on CO2 laser experiments.

This paper is organized as follows. In Sec. II, the expe

f
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mental arrangement is described. In Sec. III, observation
the two tone modulated fiber laser are presented. Constru
from recorded data, bifurcation diagrams show the dra
consequences of the small second tone. In Sec. IV a m
derived from the rate equations is introduced. Computatio
and analytical fixed point studies are then described in de
A summary and discussion of the problem is found in S
V. Details of the derivation of the map are located in Appe
dixes A and B.

II. EXPERIMENTAL SETUP

A schematic of the neodymium fiber laser is shown
Fig. 1. The primary component is a 2.8 m single transve
mode doped optical fiber whose cleaved ends are butte
input and output coupling mirrors. The input dichroic mirr
is highly transmissive at the pump wavelength of 810
and highly reflective at the lasing wavelength of 1088 n
The output coupler has a reflectivity of 95% at 1088 nm. T
fiber is 3.5 m m in diameter and has an absorption rate of
db/m at 810 nm. The cavity decay time and the fluoresce
lifetime aretc511.1 ns andt5460 ms, respectively. In ad-
dition to the large number of longitudinal modes oscillatin
there are two polarization states. The laser is pumped wit
SDL-5412 laser diode operating at 810 nm. The initially
liptical beam is collimated, rounded with an anamorph
prism pair then reduced by means of a simple telescop
order to mode match with the focusing lens and fiber. Min
reflections from the cleaved surface of the fiber that
coupled back into the modulated laser diode render its in
sity highly erratic. These detrimental reflections were su
ciently negated by incorporating a Faraday isolator tuned
obtain over 43 dB attenuation. On the output end of the la
the unabsorbed pump beam is separated from the fiber
by a dichroic mirror then steered into a photodetector. T
laser light propagates through a long wave pass filter~950
nm cutoff! into a New Focus 1811 125 MHz bandwidth ph
todetector. Intensity time series are recorded with a T
tronix RTD710 ten-bit vertical resolution digitizer. Th
pump beam is modulated at a frequency,f 530 kHz. At this
pump level the relaxation oscillations of the free runni
laser were measured atf r540 kHz. We modulated the cur
rent of the laser diode with

I ~ t !5I 01I 1cos~vt !1I 2cos~ 1
2 vt1f!. ~2.1!

FIG. 1. The experimental arrangement. LD, laser diode; LI, c
limating lense; AP, anamorphic prism; F1, Faraday isolator;
focusing lense; M1, input coupling mirror; M2, 95% reflective ou
put coupling mirror; DM, dichroic mirror~HR at 810 nm, HT at
1064 nm!; PD1, PD2 photodetectors.
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The threshold of the fiber laser occurs atI th534 mA pump
current, and we operate the laser withI 0565 mA. This gives
a pump parameter ofA0[I 0 /I th51.93.

I 1, I 2, and f constitute the control parameter space
explore below. Once the pump is even slightly modula
(I 1!I 0), the normal cw output of the fiber laser is replac
by large amplitude relatively spiky oscillations. A typica
time series of the intensity is shown in Fig. 2~a!. The laser is
quiet for relatively long amounts of time followed by stron
pulses.

There is a degree of uncertainty in the exact amoun
laser light coupled into the fiber. We found that the las
diode intensity, when modulated at 40 kHz, is linearly r
lated to its driving current. Thus we leave the modulati
measurements in terms of the laser diode current. We m
sure the total intensity of the fiber laser and leave the
tained time series in the ten-bit integer scale of the digitiz

III. EXPERIMENTAL OBSERVATIONS

In this section we study the dynamics of the fiber laser
a primary modulation amplitudeI 1, second frequency ampli
tude I 2, and phase differencef control parameter space. I
particular, we focus on the response of the laser when
operating in the vicinity of its P2 bifurcation point.

For an initial experiment, we fixI 2 andf and study the
dynamics asI 1 is ramped from 2.1 mA to 2.5 mA. At eac
increment, intensity time series are digitized. From the
corded data, the maxima of the intensity oscillations are
tracted and plotted versus the primary modulation amplitu

-
,

FIG. 2. ~a! An intensity time series of the single frequenc
pump modulated neodymium fiber laser.~b! A phase portrait from
which the map is derived. TheX(Y) axis represents the dimension
less inversion~intensity!. Point (x,y)5(xn,0) at time t5sn , de-
notes the end of a pulse and begining of a period in which
population inversion increases while the intensity is negligible. A
ter the subsequent intensity spike, the laser relaxes into a
(xn11,0) at timet5sn11.
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I 1. The resulting bifurcation diagrams are shown in Figs
and 4. In Figs. 3~a! and 4~a! I 250 mA. These two figures are
single modulation frequency bifurcation diagrams to be u
as a reference. The focus is upon the P2 pitchfork bifurca
that occurs atI 1'2.4 mA. Note that there is a slight differ
ence in the bifurcation point between the two figures. This
predominantly due to environmental factors that affect
system. Consequently, in the experiment, care was take
first record a reference data set then immediately acquire

FIG. 3. ~a! Experimental bifurcation diagram of the fiber las
with one tone pump modulation.~b! Two modulation driving.
I 250.06 mA andf50. ThoughI 2 is very small, the P1 orbit is
completely split.

FIG. 4. ~a! One tone modulation reference bifurcation diagra
~b! I 250.06 mA andf5p/2. At this critical phase the effect du
to the perturbation is negligible.
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set in which the perturbation was applied. The environmen
factors, ambient temperature and mechanical drift, affect
fiber laser on a very slow time scale, tens of minutes ver
microseconds that the observed dynamics take place. Th
fore, these factors do not influence the fundamental bifur
tion mechanisms. Figure 3~b! shows the bifurcation diagram
for I 250.06 mA andf50. Here no true P1 orbit exist
sinceI 2, albeit small, is still sufficient to unfold the P2 pitch
fork bifurcation. Consequently, the formerly P1 orbit split
We find that atf50, the splitting of the P1 orbit due to th
second frequency component is maximized. In contrast,
4~b! is a bifurcation diagram taken forf5p/2 and
I 250.006 mA. On comparison with Fig. 4~a!, little change in
the bifurcation point or the P1 orbit occurs.

Examining the drive signal Eq.~2.1! provides clues to the
relationship between the effect due to the second tone
f. At a phase anglef50 the amplitudes of successiv
maxima will be different by 2I 2. In contrast, atf5p/2 the
amplitudes of successive maxima are equal. Conseque
we expect that the response of the laser will be drastic
changed iff50.

In the next experiment we probe theI 2 - f control space
in order to study the lasers response to variations in
v/2 drive component. The goal is to distinguish the valu
of I 2 andf that have a clear effect on the system from tho
values that, at least experimentally, have little effect. H
I 152.35 mA, that is, just below the P2 point whenI 250.
The procedure consists of a computer controlled doubly
erative loop inf and I 2. The inner loop rampsf from
225° –165° while the outer loop incrementsI 2. At each
point, a time series is acquired and the maxima of each
cillation extracted. We then calculate the average devia
between theNth andN1 j th peak where ‘‘j ’’ refers to the
period of the orbit in question andN is summed over all
peaks. This experiment is summarized in the contour p
shown in Fig. 5. In this figure we distinguish the regio
where the effect of the perturbation is small and obscured
the inherent system noise~so that the trajectory resembles
P1 orbit! from the region where a split P1 orbit is experime
tally discernable. The contour line marks the boundary wh
we are able to distinguish the split of the P1 orbit from t
collected data. This plot is intended to provide insight in

.

FIG. 5. This contour plot, constructed in aI 2 and f control
space, shows the effect of the second tone on the dynamics o
system. Regardless ofI 2, at f5p/2, the effect due to the pertur
bation is minimized.
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the effect of the perturbation as a function off. For small
values ofI 2, the effect of the perturbation is obscured, a
the laser operates in what resembles a P1 orbit. AsI 2 is
increased, the splitting of the P1 orbit becomes apparent
the laser operates in a P2 regime. However, in the vicinity
f5p/2, the effect of the perturbation is strongly attenua
regardless ofI 2.

In a final experiment, we investigate the amplification
the v/2 frequency component nearby but below the P2
furcation point. The gainG of this natural amplifier is de-
fined to be the ratio of thev/2 frequency component whe
I 1'I pd to this component whenI 150 @10,11#

G5
F~v/2,I 1'I pd!

F~v//2,I 150!
. ~3.1!

If I 2 is small, the scaling of the denominator goes asI 2.
When 1023,I 2 /I pd,531022 and f50, we find that the
numerator scales asI 2

1/3. Consequently, the gain as a fun
tion of I 2 scales asI 2

22/3 in this region. Thus there is a sizab
gain of thisv/2 component that decreases asI 2 increases.
However, for larger values ofI 2 or if the system is not close
to the P2 bifurcation point, we find that the numerator
sponds linearly. The laser then functions as a noninver
unity gain amplifier of thev/2 frequency component.

IV. INVESTIGATING THE CLASS B LASER MAP

In this section, we analyze the bifurcation diagram of t
periodic states in the vicinity of the P2 bifurcation poin
Though the fiber laser is a complex system that canno
completely described as a classB laser, the bifurcation
changes near the P2 bifurcation point and resulting from
v/2 component do not depend on the details of the model
rather the nature of the bifurcation transition~here a super-
critical P2 pitchfork bifurcation!. In order to determine thes
bifurcation effects, we shall concentrate on the well kno
single mode laser rate equations and derive simple equa
for a map. The derivation of the map is motivated by o
numerical and experimental observations of strongly pul
ing intensity oscillations consisting of short and inten
pulses separated by relatively large periods of time in wh
the laser intensity is negligible, see Fig. 2~a!. The model
equations are the single mode classB laser equations for the
amplitude of the laser fieldE and the inversion of population
N

dE

dt
5~N21!E, ~4.1!

dN

dt
5g@A~ t !2N2NuEu2#. ~4.2!

The time t is measured in units of the cavity decay tim
tc andg is the ratio of the cavity decay time to the fluore
cence lifetime,t (g[tc /t.2.431025). A(t) is the pump
parameter and is given by

A~ t !5A01A1cos~v1t !1A2cos~v2t1f!, ~4.3!
nd
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where A0.1 and v25v1 /2. In Eq. ~4.3!, the modulation
frequencyv1 is close to the free running laser relaxatio
frequency defined byvR[A2g(A021) ~hence the lasing
threshold occurs forA051). The amplitudesA1 andA2 are
positive (A2!A1!A0) andf is a phase. We considerA1 as
our bifurcation parameter and keepA2 andf fixed. Of par-
ticular interest is the modification of the laser response n
the P2 bifurcation point asf is progressively changed.

The equations for this map are obtained by using
method developed for a loss modulated classB laser by
Schwartz and Erneux@20#. Appendix A outlines the deriva-
tion of the pump modulated map along with definitions
the notation used below. As a visual aid for the construct
of the map, refer to Fig. 2~b!. Consider a space where th
X and Y axes represents the dimensionless inversion
intensity, respectively. Definingx as the scaled inversion an
y as the scaled intensity, we start from the po
(x,y)5(xn,0) at timet5sn which describes the state of th
laser as a pulse in ending. The laser is quiescent up
t5sn11 at which point the subsequent pulse occurs. Beca
the intensity is constant in this region, we analytically sol
Eq. ~4.2!. After the ensuing pulse, considered short enou
in time so that the drive terms are essentially constant,
laser relaxes into the state (x,y)5(xn11,0) at time
t5sn11. We then analytically solve this problem in th
phase space. The two solutions are then matched using
method ofmatched asymptotic expansions@24#. The result-
ing map determines the state of the laser from the end of
pulse to the end of the next. It consists of one equation
the periodsn112sn and one forxn after an oscillation, see
Eq. ~A7! and Eq.~A8!.

From the map, we compute the set of pointssn112sn as
the bifurcation parameter,d1 and control parametersd2 and
f are varied. These generated points are often referred t
the interspike interval@7# and denote the amount of tim
lapsed between successive pulses. Curiously these inte
are not necessarily simple harmonics of the driving f
quency. Instead the map can exhibit a rich structure equ
lent to a Poincare´ surface constructed at discrete time inte
vals. This is due to the fact that interspike intervals of sp
data carry the same dynamical state information as amplit
measurements of the intensity. Below we compute bifur
tion diagrams in order to probe the dynamics of the syst
and then we perform a fixed point analysis. Bifurcation d
grams are shown in Fig. 6. Herev150.9 and «50.01
(e[Ag@2(A021)#21). Figure 6~a! shows the reference bi
furcation diagram whend250. The interspike interval re-
mains constant up tod151.0 at which point the pitchfork P2
bifurcation occurs. In Fig. 6~b! d250.01 andf5p/2. The
addition of the second frequency component destroys
pitchfork bifurcation. The result is the occurrence of anim-
perfectbifurcation and the replacement of the P2 bifurcati
point with a limit point@25#. The inner upper and lower trac
in Fig. 6~b! represents the numerical solution whend1 is
decreased. These branches arc towards the limit point
Fig. 6~c! d250.01 andf5171°. At this phase, the unfolding
of the attractor is substantially greater.

Subsequently we make a detailed study of the effect
f on the system dynamics. The P2 orbit is described in te
of the intervals between intensity spikessn112sn and
sn122sn11 given by
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sn112sn5
~2p1T!

v1
and sn122sn115

~2p2T!

v1
.

~4.4!

Note that for a P1 orbit,T50. In Fig. 7 we plotT, versus the
phase for various values ofd2 when d151.0. We find that
whenf5p/2, T is minimized. This effect is maximized a

FIG. 6. Numerical bifurcation diagrams of the interspike inte
val, sn112sn , vs d1 ~a! d250. A pitchfork bifurcation occurs at
d151.0 creating the P2 orbit.~b! d250.01 andf590°. The pitch-
fork bifurcation no longer exists and the P2 bifurcation point
replaced by a limit point located where the two inner branc
converge.~c! f5171° andd250.002. At this phase, the unfoldin
is substantially larger.

FIG. 7. T @T5v1(sn112sn)22p# is plotted vsf for various
values ofd2 when d151.0. The influence of the second tone
maximized when f50° or f5180° and minimized when
f590°.
f50 andf5p. This figure is in agreement with the exper
mental findings shown in Fig. 5.

Due to the inclusion of damping, the map described
Eq. ~A7! and Eq.~A8! is too complicated to be solved ana
lytically for the P1 orbit and P2 and higher bifurcatio
points. However, we may benefit from the small value ofe.
For our fiber laser, withg.2.431025 and A051.93, Eq.
~A4! informs us thate.431023. The small value ofe sug-
gests that we investigate the equations of the map ase50.
Taking the limite→0 from Eq.~A7! and~Eq. ~A8! leads to
the following problem for the periodsn112sn and the
change in amplitudexn112xn :

sn112sn522xn12
d1

v1
sin~v1sn!12

d2

v2
sin~v2sn1f! ,

xn112xn52
d1

v1
@sin~v1sn11!1sin~v1sn!#

2
d2

v2
@sin~v2sn111f!1sin~v2sn1f!#.

~4.5!

Hidden in the simplicity of Eq.~4.5! is the fact that it
accurately mirrors the classB laser rate equations. Equatio
~4.5! allows us to avoid the computationally intensive task
integrating Eq.~4.2! and to analytically study the variou
phenomena that arise as a result of the applied perturbat

We now describe our fixed point analysis. Using Eq.~A1!
and Eq.~A9!, there is a correspondence between the ma
mum intensity, yM and xn11 that is given by yM5(A0

21)(11 1
2xn11

2 ). If d250, the P1 solution satisfies the con
ditionssn112sn52p/v1 andxn115xn . From Eq.~4.5!, we
then obtain

xn52
p

v1
and sn5~2n21!

p

v1
. ~4.6!

From the linear stability analysis of the P1 solution, we fi
a period doubling bifurcation point at

d151. ~4.7!

We wish to investigate the bifurcation diagram of the pe
odic states in the vicinity of this point and for small values
d2 . We anticipate the effect of the second modulation
assuming that the term multiplyingd2 acts as a imperfection
in the bifurcation problem@25#. Its effect is strongest nea
the bifurcation point and we solve Eqs.~4.5! by a perturba-
tion method valid for smalld2 ~see Appendix B!. The final
result for the P2 orbit is described in terms ofT defined in
Eq. ~4.4!. T5T(d1) is determined from the P2 fixed poin
equations. Ifd121!d2

2/3, T5O(d2) which is small. Simi-
larly if d121@d2

2/3, T is the combination of the known P
solution ford250 plus anO(d2) correction@25#. However
when ud121u5O(d2

2/3), a significant amplification occurs
near the P2 bifurcation point. Specifically,T5O(d2

2/3) and
satisfies to first approximation, Eq.~B14!, or equivalently,

2~d121!T2 1
12T318d2sin~f2p/2!50. ~4.8!

s
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7228 56T. C. NEWELL et al.
The solution of this equation is best analyzed in terms
the implicit solutiond15d1(T). If fÞp/2, the P2 pitchfork
bifurcation is destroyed and replaced by a smooth transi
branch and a second branch bounded by a limit point,
Fig. 8. The limit point can be determined from Eq.~4.8! and
is located at

d1511 1
2 @6d2sin~f2p/2!#2/3. ~4.9!

If f5p/2, the P2 bifurcation is still possible. From Eq.~B9!
this point is located at

d1511d2
2 ~4.10!

for small d2.

V. SUMMARY AND DISCUSSION

There is a substantial amount of research in nonlin
systems subjected to secondary sinusoidal modulations.
vantageous effects on the system dynamics, such as co
of a chaotic trajectory, can occur as a result of this type
simple perturbations. This is notably appealing for the c
of high speed systems, such as semiconductor lasers
operate in the GHz regime, where strict time constraints li
the computations required for theoretical controlling infl
ences.

As a prelude to investigations of this nature, we ha
studied a neodymium fiber laser that is operating in the
cinity of its P2 bifurcation point. This is a complex system
that there a number of longitudinal modes operating, t
polarization eigenstates, and possibly saturable absorp
effects. However, since its relaxation oscillations are only
the kHz regime, we are able to make detailed time and
quency domain investigations. In this paper, we have e
ployed the diode laser pump in order to modulate the ene
applied to the laser. The primary driver is a 2p/v periodic
component whose amplitudeI 1 is used as a bifurcation pa

FIG. 8. An analytical calculation ofT vs the control paramete
D. This plot shows that the perturbation unfolds the attractor. T
consequence is the destruction of the P2 pitchfork bifurcation.
stead, the second~upper! branch is now bounded by a limit poin
that is defined in Eq.~4.9!.
f
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rameter. We then considered the consequence of an a
tional smallp/v periodic perturbation.~The amplitude,I 2,
of the v/2 component is on the order of 3% ofI 1.!

Constructed experimental bifurcation diagrams that
capsulate the ongoing changes in the system dynamics
veals the evolution of the laser with respect to the increas
I 2. The second tone breaks the period two pitchfork bifur
tion and unfolds the attractor. Experimentally this is ma
fested by a splitting of the P1 orbit and a shifting of the
bifurcation point. We find that phase difference between
two drivers plays a crucial role. The unfolding is greatest
a phase of 0 and least for a critical phase of approxima
p/2. Figure 5 shows that this critical phase can negate
effect of the perturbation even for a large value ofI 2. We
have also found that when the laser is operating very nea
P2 bifurcation point, the gain of thev/2 frequency compo-
nent scales as22/3 for a range of values of the amplitude
the second tone. In other regimes, the gain is constant.

Theoretically, we derive an iterative map from the ra
equations for a pump modulated classB laser. This map is
motivated by the experimental and theoretical observa
that slight modulation of the pump or the intracavity loss
leads to large amplitude pulsation events, see Fig. 2~a!. This
map predicts the separation in time of the pulses and the s
of the laser at the end of such events. Though our fiber la
cannot be completely described as a classB laser, our ex-
perimental studies show that in the vicinity of the P2 bifu
cation point, the map’s predictions are in good agreem
with the experimental observations. Furthermore, beca
the damping of the laser is quite small, the map can be s
plified so that analytical studies of the fixed points can
performed. As a result, we show that the pitchfork peri
doubling bifurcation is broken and determine specific con
tions and scaling laws for this phenomena. The map is a
capable of describing the casev2 nearly equal tov1/2, stud-
ied in Ref.@13#, and which is known to lead to quasiperiod
icity. For clarity, we have chosen to focus only o
v25v1/2.

Our results are in agreement with previous observati
on two tone loss modulation of a CO2 laser@10,11# that we
now discuss. Glorieuxet al. @11# noted the unfolding of the
P2 bifurcation transition and examined, experimentally a
numerically, the behavior of a gain functionG, Eq. ~3.1!.
They noted thatG follows ad2

2/3 scaling law for small values
of d2 but then saturates to a constant asd2→0. We have also
observed this22/3 scaling law experimentally. Using ou
analysis of the imperfect bifurcation problem, we find th
G is proportional toT/d2 whereT is defined by Eq.~4.8!.
For a fixedd1<1, T behaves asd2 for d2 small, but as
d2

1/3 for larger values of d2 „specifically when
d25O@(d121)2/3#…. ComputingG, we obtain the scaling
laws found in@11#. Note that the relatively large factor mu
tiplying d2 in Eq. ~4.8! explains whyd2 needs to be quite
small in order to observe thed2

1/3 effects. Corbalanet al. @10#
analyzed the shift of the P2 bifurcation transition as a fu
tion of d2 and for a fixedd1. We identify this shift as the
change of the limit point asd2 increases. This point scale
like d1215O(d2

2/3). If f'p/2, the scaling is much smaller
and we have found thatd1215O(d2

2).
In both @10# and @11#, a critical phase is determined fo

e
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which the modification of the unperturbed~that is d250)
bifurcation diagram is minimum asd2 is increased. They
found this critical phase close top. In contrast, we determine
this critical phase to be close top/2. The difference results
from the fact that the losses are periodically modulated
@10,11# and not the pump as in our study. We have fou
analytically that the equations for the loss modulated c
leads to Eq. ~4.8! except that the imperfection term
d2sin(f2p/2) is replaced by the termd2cos(f2p/2) Hence,
the imperfection is canceled iff5p. Note that the critical
phase found in@10,11# is slightly different fromp because of
the effect of damping which is ignored in our analysis.

In @10#, the change of the P4 bifurcation point is al
analyzed experimentally. Our experiments on the fiber la
do not allow for accurate observations but analysis of
map is possible. We find that the P4 bifurcation point is n
altered by the second tone as is the P2 bifurcation transit
As a result, the shift of the P4 bifurcation point is simply
linear function ofd2. In conclusion, a minutev/2 drive fre-
quency component plays a major role on the fiber laser
namics at the P2 bifurcation point. This behavior can
accurately predicted by analytical fixed point studies o
map.
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APPENDIX A: EQUATIONS FOR THE MAP

Here we formulate the equations of the map from
pump modulated rate equations of a classB laser. The
method is described in detail for a loss modulated clasB
laser in Ref.@20#. Below we summarize the main steps of t
analysis for the pump driven case. We first change varia
in the rate equations by introducing the new variabless, x,
andy defined by

s[vRt, I 5uEu25~A021!~11y!, and N511
vR

2
x.

~A1!

Equation~4.2! is then rewritten as

x852y1d1cos~v1s!1d2cos~v2s1f!

2ex@11~A021!~11y!#, ~A2!

y85~11y!x, ~A3!

where
n
d
e

er
e
t
n.

y-
e
a

l
-

e
e

s

e

es

d j[
Aj

A021
, v j[

v

j vR
~ j 51,2!, and

e[S g

2~A021! D
1/2

. ~A4!

We next determine the solution of these equations by
method of matched asymptotic expansions@24#. Specifically,
the solution consists of two main contributions correspo
ing to the silent and active phases of the intensity osci
tions, see Fig. 2~b!. We start with the initial condition

x~sn!5xn,0, y~sn!50 ~A5!

and follow a complete orbit in the phase plane (x,y) until we
reach the point

x~sn11!5xn11 , y~sn11!50. ~A6!

The period of the orbit is given bysn112sn which satisfies
the transcendental equation

sn112sn5Fxn2
1

«
2

d1

«v1
sin~v1sn!2

d2

«v2
sin~v2sn1f!G

3$exp@2«~sn112sn!#21%

1«H d1

v1
2 @cos~v1sn11!2cos~v1sn!#

2
d2

v2
2 @cos~v2sn111f!2cos~v2sn1f!#J

1O~«2!, ~A7!

while the change ofx after one orbit is obtained from

xn1152F1

«
1S xn2

1

« Dexp@2«~sn112sn!#

1
d1

v1
$sin~v1sn11!2exp@2«~sn112sn!#sin~v1sn!%

1
d2

v2
$sin~v2sn111f!2exp@2«~sn112sn!#

3sin~v2sn1f!%1O~e2!G ~A8!

Finally, the maximum value of the intensity variabley is
related toxn11 and is given by

max~y!5 1
2 xn11

2 . ~A9!

APPENDIX B: PERIOD-TWO SOLUTION

The equations for a period-two solution satisfying the tw
conditionssn122sn54pv1

21 andxn125xn are given by

sn112sn522xn12d1v1
21sin~v1sn!12d2v2

21

3sin~v2sn1f!, ~B1!
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xn112xn52d1v1
21@sin~v1sn11!1sin~v1sn!#

2d2v2
21@sin~v2sn111f!1sin~v2sn1f!#,

~B2!

sn14pv1
212sn11522xn1112d1v1

21sin~v1sn11!

12d2v2
21sin~v2sn111f!, ~B3!

xn2xn1152d1v1
21@sin~v1sn!1sin~v1sn11!#

2d2v2
21@sin~v2sn1f!1sin~v2sn111f!#.

~B4!

Comparing Eq.~B2! and Eq.~B4! indicates that

d1v1
21@sin~v1sn11!1sin~v1sn!#1d2v2

21

3@sin~v2sn111f!1sin~v2sn1f!#50 ~B5!

and

xn115xn . ~B6!

Adding Eq.~B1! and Eq.~B3! then gives

xn52pv1
21 . ~B7!

Then using Eq.~B7!, we rewrite Eq.~B1! and Eq.~B3! as

sn112sn52pv1
2112d1v1

21sin~v1sn!

12d2v2
21sin~v2sn1f!,

sn2sn11522pv1
2112d1v1

21sin~v1sn11!

12d2v2
21sin~v2sn111f!. ~B8!

These equations are two equations for the unknownssn11
andsn . With S5v1sn andT5v1(sn112sn)22p, Eq. ~B8!
becomes

T52d1sin~S!14d2sin~ 1
2 S1f!,

2T52d1sin~S1T!24d2sin@ 1
2 ~S1T!1f#. ~B9!
e,

ys

f,

.

Equation~B9! captures the essential dynamics of the P2
furcation point.

We are interested in solving Eqs.~B9! for small d2 and
for d1 near the P2 bifurcation pointd151. Therefore, treat
d2 as an imperfection in the bifurcation problem and see
solution of the form@25#

T5d2
1/3T01d2T31•••, ~B10!

S52p1d2
1/3S01d2

2/3S31•••. ~B11!

We also need to expand the bifurcation parameter as

d1511d2
2/3D1•••, ~B12!

where D is the new control parameter. Substituting the
expressions into Eq.~B9! leads to a succession of equatio
for the unknown coefficients in Eq.~B10! and Eq.~B11!.
Analyzing these problems and their solvability conditio
leads to the following results:

S052 1
2 T0 ~B13!

whereT0 satisfies the following:

2DT02 1
12T0

318sin~f2p/2!50. ~B14!

A plot of T0 versusD is shown in Fig. 8 forf589.91°. This
plot shows that the pitchfork bifurcation is broken. Th
lower branch describes the evolution of the P1 orbit wh
the upper branch descends towards the limit point. The s
tion of Eq. ~B14! is analyzed in Sec. III. Iff5p/2, the
imperfection term in Eq.~B14! disappears and the two ton
modulation problem reduces to the perfect bifurcation ca
We may analyze this problem using Eq.~B9! with f5p/2.
The P2 bifurcation point,d15dpd is then obtained from the
linearized problem for (T,S)5(0,2p). We find that it is the
root of

dpd
2 2dpd2d2

250. ~B15!

Hence, whend2 is small, we have

dpd>11d2
2 . ~B16!
nd

nd
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