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Unfolding of the period-two bifurcation in a fiber laser pumped with two modulation tones
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The effect of a small second frequency component on a pump modulated neodymium fiber laser is investi-
gated experimentally and theoretically. This term, whose frequency is exactly half the primary driver, incites
an unfolding of the attractor. It breaks the period fpitthfork bifurcation and splits the period one orbit. The
modification of the bifurcation diagram is studied analytically by employing a map derived from theBclass
laser rate equations. We determine specific conditions and scaling laws for this phenomenon. Our analytical
predictions are in good agreement with recorded experimental [&#863-651X97)02307-9

PACS numbsgs): 42.65.Sf, 42.55.wd, 05.45b

I. INTRODUCTION laser and investigate the effect a second smad periodic
modulation component has at the P2 bifurcation point. This
ClassB lasers[1] that are modulated either through the term has a strong amplification effect on the P2 pitchfork
pump or through intracavity losses have often been used fdsifurcation[18] and allows control of the P2 instabilifyL9].
investigations of nonlinear dynamics in optical systems. On&Ve present experimental data obtained from time domain
such system, an electro-optic modulated L£@ser, was measurements that shows how the P2 bifurcation point is
originally used to experimentally observe ch4@f Among  affected. We also show that a map derived from the class
the impressive array of other research, acousto-optic losB laser rate equations accurately predicts such behavior.
modulated CQ lasers have also been used to study multistaThough this map was initially derived for a loss modulated
bility [3] and measure Floquet multipliers by targeting un-classB laser[20], we find that the pump modulated case
stable periodic orbit$4]. Potential applications of this re- behaves similarly. Consequently, we can expect that the
search include the stabilization of unstable steady states @ump modulated clasB laser should be similar to the loss
lasers[5] and the use of chaotic signals for communicationmodulated case. Our results are in agreement with the previ-

applicationy 6,7]. ous studies of two frequency loss modulated Lhasers
A topic of exceptional relevance is the behavior of non-[10,11].
linear systems at the period tw@2 and higher period bi- The response of the driven fiber laser can be studied nu-

furcation points. Typically, the bifurcation parameter is themerically by a two polarization modg¢R1,22 and its rel-
amplitude of the Zr/w periodic modulation term. As the evance for two tone modulation experiments is currently be-
system approaches the bifurcation point, stochastic and déng investigated. Particular attention is devoted to the global
terministic influences can be strongly amplified, as suggestechanges of the bifurcation diagragshifts of bifurcation
by Wiesenfeld and McNamarg8]. This idea was subse- points, periodic windows, crisgsesulting from the second
quently tested in a NMR laséB]. Recent investigations in- modulation. These are specific to the fiber laser and depend
corporated loss modulated GQasers with a driving fre- on the laser parametef23]. In contrast, we concentrate on
quency w, and a signal frequency ab/2 [10—124. These the changes of the bifurcation diagram near the first P2 bi-
investigations yielded insights in tHde)amplification of the  furcation point. Our objective is to determine analytically
wl/2 frequency component of the Fourier spectra. Addition-and verify experimentally all bifurcation effects that are in-
ally, it is found that a—2/3 scaling law exists between the troduced by the additionad/2 modulation. Specifically, our
gain of thew/2 frequency component and the amplitude ofanalysis leads to simple scaling laws describing the changes
the signal frequency just below the P2 bifurcation point. Theof the bifurcation points and the effect of the relative phase
use of anw/2 component to control chaos has also beerbetween thes and thew/2 modulations. Because our theory
investigated theoretically and experimentdliy8—17. is a local theory, our results are relevant for a large class of
This natural relation of nonlinear systems with their reso-periodically modulated lasers as well as other periodically
nance frequencies remains a source of insightful studies. Iforced nonlinear oscillators.
this paper we continue the investigation of periodic pertur- In order to analyze the bifurcation problem both qualita-
bations. We consider a2 w periodic pump modulated fiber tively and quantitatively, we consider the equations of a class
B laser. We then derive equations for a map that allow a
simple analytical description of the P2 bifurcation and the
*Also at Department of Mathematics and Statistics, University ofeffect of thew/2 component. These results compare remark-

New Mexico, Albuquerque, NM 87131. ably well with our experimental observations and clarify pre-
TAlso at Department of Physics, Duke University, P.O. Box Vious observations based on G@ser experiments.
90305, Durham, NC 27708. This paper is organized as follows. In Sec. Il, the experi-
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FIG. 1. The experimental arrangement. LD, laser diode; LI, col- 0 50 100 150 200

limating lense; AP, anamorphic prism; F1, Faraday isolator; L2, time (us)
focusing lense; M1, input coupling mirror; M2, 95% reflective out-
put coupling mirror; DM, dichroic mirrofHR at 810 nm, HT at (b)
1064 nm; PD1, PD2 photodetectors.

mental arrangement is described. In Sec. I, observations of
the two tone modulated fiber laser are presented. Constructed
from recorded data, bifurcation diagrams show the drastic \
consequences of the small second tone. In Sec. IV a model

derive?j from the rate equations is introduced. Computational OO N > X
and analytical fixed point studies are then described in detail. n !
A summary and discussion of the problem is found in Sec.

V. Details of the derivation of the map are located in Appen- FIG. 2. (8 An intensity time series of the single frequency
dixes A and B. pump modulated neodymium fiber lasés) A phase portrait from

which the map is derived. Thé(Y) axis represents the dimension-
less inversion(intensity). Point (x,y)=(x,,0) at timet=s,, de-
Il. EXPERIMENTAL SETUP notes the end of a pulse and begining of a period in which the

. . . . . population inversion increases while the intensity is negligible. Af-

A schematic of the neodymium fiber laser is shown N the subsequent intensity spike, the laser relaxes into a state
Fig. 1. The primary component is a 2.8 m single transversey . 0) at timet=
mode doped optical fiber whose cleaved ends are butted to
Input and output_co_uplmg mirrors. The input dichroic mirror The threshold of the fiber laser occurslgt=34 mA pump
IS hlghly transmissive at the pump wavelength of 810 NMeurrent, and we operate the laser wig+65 mA. This gives
and highly reflective at the lasing wavelength of 1088 nm. pump’ parameter ok,=1/l = 1.93
The output coupler has a reflectivity of 95% at 1088 nm. The o= 0 th™ ==
fiber is 3.5 u m in diameter and has an absorption rate of 8.5 1, 1, and ¢ constitute the control parameter space we

. ) explore below. Once the pump is even slightly modulated
db/m at 810 nm. The cavity decay time and the fluorescenc . :
o : <
lifetime arer.—11.1 ns and-— 460 s, respectively. In ad- ﬁl lo), the normal cw output of the fiber laser is replaced

dition to the large number of longitudinal modes oscillating,by large amplitude relatively spiky oscillations. A typical

there are two polarization states. The laser is pumped with atime series of the intensity is shown in FigaP The laser is
SDL-5412 laser diode operating at 810 nm. The initially el—gﬂ:zgor relatively long amounts of time followed by strong

liptical beam is collimated, rounded with an anamorphic There is a degree of uncertainty in the exact amount of

pridsmtpair tgen ridﬁce_?h?%/ rr;eang of Ia simpljefﬁt()aleslc\:ﬂqpeti%ser light coupled into the fiber. We found that the laser
orger to mode match wi € focusing lens and Toer. MINut&;, e intensity, when modulated at 40 kHz, is linearly re-

reflections from the cleaved surface of the fiber that arg.iad to its driving current. Thus we leave the modulation

coupled back into the modulated laser diode render its inten-, . < \rements in terms of the laser diode current. We mea-

sity highly erratic. These detrimental reflections were sufﬁ—sure the total intensity of the fiber laser and leave the ob-

ciently negated by incorporating a Faraday isolator tuned tQ_: ; o it § S
obtain over 43 dB attenuation. On the output end of the Iase(r??med time series in the ten-bit integer scale of the digitizer.

the unabsorbed pump beam is separated from the fiber light
by a dichroic mirror then steered into a photodetector. The . EXPERIMENTAL OBSERVATIONS
laser light propagates through a long wave pass @0

nm cutoff into a New Focus 1811 125 MHz bandwidth pho- In this section we study the dynamics of the fiber laser in
todetector. Intensity time series are recorded with a Tek& Primary modulation amplitude, second frequency ampli-

tronix RTD710 ten-bit vertical resolution digitizer. The Ud€!2, and phase differencé control parameter space. In.
pump beam is modulated at a frequenty;30 kHz. At this ~ Particular, we focus on the response of the laser when it is
pump level the relaxation oscillations of the free running®Perating in the vicinity of its P2 bifurcation point.

laser were measured =40 kHz. We modulated the cur- _ FOr an initial experiment, we fix, and ¢ and study the
rent of the laser diode with dynamics ad, is ramped from 2.1 mA to 2.5 mA. At each

increment, intensity time series are digitized. From the re-
corded data, the maxima of the intensity oscillations are ex-
[(t)=1g+1,c08 wt)+1,c08 3wt + ). (2.1)  tracted and plotted versus the primary modulation amplitude

Sn+1-
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7 FIG. 5. This contour plot, constructed inla and ¢ control
il : space, shows the effect of the second tone on the dynamics of the
800 +{||“”' - system. Regardless 6§, at ¢= /2, the effect due to the pertur-

' bation is minimized.

2.2 23 24 25

set in which the perturbation was applied. The environmental
factors, ambient temperature and mechanical drift, affect the
FIG. 3. (a) Experimental bifurcation diagram of the fiber laser flb.er laser on a very slow time scale, te.ns of minutes versus
with one tone pump modulatior(s) Two modulation driving. microseconds that the observed dynamics take place..There-
1,=0.06 mA andé=0. Thoughl, is very small, the P1 orbit is fpre, these factors dp not influence the fundamenta}l bifurca-
tion mechanisms. Figure(l® shows the bifurcation diagram
for 1,=0.06 mA and¢=0. Here no true P1 orbit exists
; : : : - incel ,, albeit small, is still sufficient to unfold the P2 pitch-
1. The resulting bifurcation diagrams are shown in Figs. 3fsork bhz‘urcation. Consequently, the formerly P1 orbitpsplits.
yve find that at¢p=0, the splitting of the P1 orbit due to the
econd frequency component is maximized. In contrast, Fig.
(b) is a bifurcation diagram taken fowp=x/2 and
§2=0.006 mA. On comparison with Fig(d, little change in
ethe bifurcation point or the P1 orbit occurs.

completely split.

as a reference. The focus is upon the P2 pitchfork bifurcatio
that occurs at;~2.4 mA. Note that there is a slight differ-
ence in the bifurcation point between the two figures. This i
predominantly due to environmental factors that affect th e ; . .
system. Consequently, in the experiment, care was taken to EX@mining the drive signal Eq2.1) provides clues to the

first record a reference data set then immediately acquire tHglatlonshlp between the effect due FO the second tong and
. At a phase anglep=0 the amplitudes of successive

maxima will be different by B,. In contrast, atp= /2 the

swoof ] amplitudes of successive maxima are equa]. Consequ_ently,
g0l i we expec_t that the response of the laser will be drastically
i”m!!!!!‘;ii” changed if¢=0.
800 Immmmmlll!!ll!!i ity In the next experiment we probe the- ¢ control space
g 750+ , ."h"l"ﬂ--" ' . in order to study the lasers response to variations in the
5 700k .mmulm.-‘ i /2 drive component. The goal is to distinguish the values
2 650 ..._.mmiﬂi'"- ; 1 of I, and ¢ that have a clear effect on the system from those
= Tﬂl"m- values that, at least experimentally, have little effect. Here
£oeof A 1;=2.35 mA, that is, just below the P2 point whég=0.
§ oo T T T T The_procedur_e consists of a cc_)mputer controlled doubly it-
s ®) ImimLﬂ!-l!"gl erative loop in¢ and l,. The inner loop rampsp from
5 or 4;.--m"l”]i!iliihlii!!|!|!= —25°-165° while the outer loop increments. At each
g 800+ ,_.."ﬂ"'l"’ A . point, a time series is acquired and the maxima of each os-
é 750} mmmﬂl““" ) 4 cillation extracted. We then calculate th<=T average deviation
o mmiﬂL ) | between theNth andN+ jth peak where §” refers to the
Lﬂlllinilllm'~"" period of the orbit in question anN is summed over all
65011 =2 ] peaks. This experiment is summarized in the contour plot
6001 - shown in Fig. 5. In this figure we distinguish the region
R Y ST Y where the effect of the perturbation is small and obscured by
I, (mA) the inherent system noigeo that the trajectory resembles a

P1 orbiy from the region where a split P1 orbit is experimen-
FIG. 4. (a) One tone modulation reference bifurcation diagram. tally discernable. The contour line marks the boundary where
(b) 1,=0.06 mA and¢=7/2. At this critical phase the effect due we are able to distinguish the split of the P1 orbit from the
to the perturbation is negligible. collected data. This plot is intended to provide insight into
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the effect of the perturbation as a function &f For small  whereA;>1 andw,=w4/2. In Eg. (4.3, the modulation

values ofl,, the effect of the perturbation is obscured, andfrequencyw, is close to the free running laser relaxation

the laser operates in what resembles a P1 orbitl Ass  frequency defined bywg=+2vy(Ag—1) (hence the lasing

increased, the splitting of the P1 orbit becomes apparent arttireshold occurs foAy=1). The amplitudeg\; andA, are

the laser operates in a P2 regime. However, in the vicinity opositive (A,<A;<Ag) and ¢ is a phase. We considér; as

¢= /2, the effect of the perturbation is strongly attenuatedour bifurcation parameter and keép and ¢ fixed. Of par-

regardless of ,. ticular interest is the modification of the laser response near
In a final experiment, we investigate the amplification ofthe P2 bifurcation point ag is progressively changed.

the w/2 frequency component nearby but below the P2 bi- The equations for this map are obtained by using the

furcation point. The gairG of this natural amplifier is de- method developed for a loss modulated cl&sdaser by

fined to be the ratio of the/2 frequency component when Schwartz and Erneup0]. Appendix A outlines the deriva-

I1~1,4 to this component wheh, =0 [10,11] tion of the pump modulated map along with definitions of
the notation used below. As a visual aid for the construction

F(w/2,11~1,4) of the map, refer to Fig. (®). Consider a space where the
ZW- 3.9 X and Y axes represents the dimensionless inversion and

intensity, respectively. Defining as the scaled inversion and

y as the scaled intensity, we start from the point
(x,¥)=(x,,0) at timet=s, which describes the state of the
laser as a pulse in ending. The laser is quiescent up to
. i Pt X ) ] t=s,, 1 at which point the subsequent pulse occurs. Because
tion of I ; scales as, “~in this region. Thus there is a sizable ¢ jntensity is constant in this region, we analytically solve
gain of thisw/2 component that .decreaseslgs.increases. Eqg. (4.2). After the ensuing pulse, considered short enough
However, for larger values df, or if the system is not close i time so that the drive terms are essentially constant, the
to the P2 bifurcation point, we find that the numerator re-|gser relaxes into the statex,§)=(x,+1,0) at time

sponds linearly. The laser then functions as a noninverting_— S,+1. We then analytically solve this problem in the

If 1, is small, the scaling of the denominator goed as
When 103<1,/1,43<5%10 ? and =0, we find that the
numerator scales a§’3. Consequently, the gain as a func-

unity gain amplifier of thew/2 frequency component. phase space. The two solutions are then matched using the
method ofmatched asymptotic expansioi&t]. The result-
IV. INVESTIGATING THE CLASS B LASER MAP ing map determines the state of the laser from the end of one

pulse to the end of the next. It consists of one equation for

In this section, we analyze the bifurcation diagram of thethe periods,,, ;—s, and one forx, after an oscillation, see
periodic states in the vicinity of the P2 bifurcation point. gq. (A7) and Eq.(A8).

Though the fiber laser is a complex system that cannot be From the map, we compute the set of poigts;—s, as

completely described as a clags laser, the bifurcation the pifurcation parametes; and control parameterd, and
changes near the P2 bifurcation point and resulting from they are varied. These generated points are often referred to as
/2 component do not depend on the details of the model buhe interspike interval[7] and denote the amount of time
rather the nature of the bifurcation transitidmere a super- |apsed between successive pulses. Curiously these intervals
critical P2 pitchfork bifurcation In order to determine these e not necessarily simple harmonics of the driving fre-
bifurcation effects, we shall concentrate on the well k”OW”quency. Instead the map can exhibit a rich structure equiva-
single mode laser rate equations and derive simple equationsnt to a Poincareurface constructed at discrete time inter-
for a map. The derivation of the map is motivated by ourya|s. This is due to the fact that interspike intervals of spiky
numerical and experimental observations of strongly pulsatyata carry the same dynamical state information as amplitude
ing intensity oscillations consisting of short and intensemeasurements of the intensity. Below we compute bifurca-
pulses separated by relatively large periods of time in whichion diagrams in order to probe the dynamics of the system
the laser intensity is negligible, see FigaR The model 4ng then we perform a fixed point analysis. Bifurcation dia-
equations are the single mode cl&tfaser equations for the grams are shown in Fig. 6. Here,=0.9 and £=0.01

amplitude of the laser fiel@ and the inversion of population (e= /—Iy[Z(Ao—l)T ). Figure Ga) shows the reference bi-
N furcation diagram whers,=0. The interspike interval re-
mains constant up t6; = 1.0 at which point the pitchfork P2
dE N—1)E 4.1 bifurcation occurs. In Fig. ®) 6,=0.01 and¢==/2. The
E‘( )E, (4. addition of the second frequency component destroys the
pitchfork bifurcation. The result is the occurrence ofian
dN perfectbifurcation and the replacement of the P2 bifurcation
— =9[A(t)—N—-N|E|?]. (4.2 point with a limit point[25]. The inner upper and lower trace
dt in Fig. 6(b) represents the numerical solution whén is
decreased. These branches arc towards the limit point. In
The timet is measured in units of the cavity decay time, Fig. 6(c) 5,=0.01 and$=171°. At this phase, the unfolding
7. andy is the ratio of the cavity decay time to the fluores- of the attractor is substantially greater.
cence lifetime,r (y=7./7=2.4<107°). A(t) is the pump Subsequently we make a detailed study of the effect of
parameter and is given by ¢ on the system dynamics. The P2 orbit is described in terms
of the intervals between intensity spikes,,—s, and
A(t)=Ap+Aicoq wqt) + Ao wot + ¢), (4.3 s,4:2—Sh4+1 given by
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FIG. 6. Numerical bifurcation diagrams of the interspike inter-

val, s, 1—Sn, Vs 8; (@ 8,=0. A pitchfork bifurcation occurs at
6,=1.0 creating the P2 orbitb) §,=0.01 and¢$=90°. The pitch-

fork bifurcation no longer exists and the P2 bifurcation point is(
replaced by a limit point located where the two inner branches

converge(c) ¢=171° ands,=0.002. At this phase, the unfolding
is substantially larger.

(27+T) (27-T)
——— and Sy.o—Spe1= .

S —Sp=
n+1" >n w1 w1

(4.9
Note that for a P1 orbiff=0. In Fig. 7 we plofT, versus the

phase for various values @, when §;=1.0. We find that
when ¢= /2, T is minimized. This effect is maximized at
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FIG. 7. T [T= w1(Sn;1—Sn) — 2] is plotted vs¢ for various

UNFOLDING OF THE PERIOD-TWO BIFURCATION IN ...

7227

=0 and¢= . This figure is in agreement with the experi-
mental findings shown in Fig. 5.

Due to the inclusion of damping, the map described by
Eqg. (A7) and Eq.(A8) is too complicated to be solved ana-
Iytically for the P1 orbit and P2 and higher bifurcation
points. However, we may benefit from the small valuesof
For our fiber laser, withy=2.4x10"° and A,=1.93, Eq.
(A4) informs us thate=4x10"3. The small value ot sug-
gests that we investigate the equations of the map=a8.
Taking the limite—0 from Eq.(A7) and(Eg. (A8) leads to
the following problem for the periods,,;—s, and the
change in amplitude,,, ;—X,:

é o
Sn+1—Sn=—2X,+ 2w—115in(w15n) + Zw—zsin(wzanr b),

o :
Xn+1~Xp= — w_l[sm(wlsn+l) +sin(w1Sy)]

- %[Sin(wzsmﬁ @) +sin(wzS,+ @) ].
2

4.9

Hidden in the simplicity of Eq(4.5 is the fact that it
accurately mirrors the clas® laser rate equations. Equation
4.5) allows us to avoid the computationally intensive task of
integrating Eq.(4.2) and to analytically study the various
phenomena that arise as a result of the applied perturbations.

We now describe our fixed point analysis. Using E(l)
and Eq.(A9), there is a correspondence between the maxi-
mum intensity,y,, and X, that is given byyy,=(Aq
-1)(1+ %xﬁﬂ). If 5,=0, the P1 solution satisfies the con-
ditionss,, 1 —sp=2m/w, andx, ;1=X,. From Eq.(4.5), we
then obtain

(4.6

v
Xp=— —
n wl

a
and sn=(2n—1)w—1.
From the linear stability analysis of the P1 solution, we find
a period doubling bifurcation point at

6,=1. 4.7

We wish to investigate the bifurcation diagram of the peri-
odic states in the vicinity of this point and for small values of
5,. We anticipate the effect of the second modulation by
assuming that the term multiplyingp acts as a imperfection
in the bifurcation problenj25]. Its effect is strongest near
the bifurcation point and we solve Eg4.5) by a perturba-
tion method valid for smalls, (see Appendix B The final
result for the P2 orbit is described in terms Dfdefined in
Eq. (4.4). T=T(4,) is determined from the P2 fixed point
equations. Ifs;—1< 653, T=0(4,) which is small. Simi-
larly if 6,—1> 6823, T is the combination of the known P2
solution for 8,=0 plus anO(8,) correction[25]. However
when |8,—1|=0(52%), a significant amplification occurs
near the P2 bifurcation point. Specificallj=0(53°) and

values of 8, when §;=1.0. The influence of the second tone is satisfies to first approximation, E¢B14), or equivalently,

maximized when ¢=0° and minimized when

$=90°.

or ¢=180°

2(86,—-1)T—5T3+86,8iN(p—w/2)=0. (4.9
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3Ty T rameter. We then considered the consequence of an addi-
2 3 tional small 7/ periodic perturbation(The amplitude| ,,
2_ E of the w/2 component is on the order of 3% bf.)

Constructed experimental bifurcation diagrams that en-
capsulate the ongoing changes in the system dynamics re-
: ] veals the evolution of the laser with respect to the increase in
E E I,. The second tone breaks the period two pitchfork bifurca-
: : tion and unfolds the attractor. Experimentally this is mani-
_ fested by a splitting of the P1 orbit and a shifting of the P2
bifurcation point. We find that phase difference between the
two drivers plays a crucial role. The unfolding is greatest for
a phase of 0 and least for a critical phase of approximately
/2. Figure 5 shows that this critical phase can negate the
3 effect of the perturbation even for a large valuel of We
N have also found that when the laser is operating very near its
P2 bifurcation point, the gain of the/2 frequency compo-

A nent scales as 2/3 for a range of values of the amplitude of
the second tone. In other regimes, the gain is constant.

FIG. 8. An analytical calculation of vs the control parameter Theoretically, we derive an iterative map from the rate
A. This plot shows that the perturbation unfolds the attractor. Tthquations for a pump modulated cl&Bdaser. This map is
consequence is the destruction of the P2 pitchfork bifurcation. Inyqativated by the experimental and theoretical observation
stead, the secon@ippe) branch is now bounded by a limit point {hat slight modulation of the pump or the intracavity losses
that is defined in Eq(4.9). leads to large amplitude pulsation events, see Fig. Zhis
{nap predicts the separation in time of the pulses and the state

he imolicit soluti a ¢ 12 th itchfork of the laser at the end of such events. Though our fiber laser
the implicit solutiondy = 6,(T). If ¢# m/2, the P2 pitchfork — -onh6t he completely described as a clBskaser, our ex-

bifurcation is destroyed and replaced by a smooth tranSitiorE)erimen'tal studies show that in the vicinity of the P2 bifur-

branch and a second branch bounded by a limit point, se ti int. th ' dicti : t
Fig. 8. The limit point can be determined from E4¢.8) and Cation point, the map's predictions are in good agreemen

) with the experimental observations. Furthermore, because
is located at the damping of the laser is quite small, the map can be sim-
—1.1 i 2/3 plified so that analytical studies of the fixed points can be
01=1+3[658in($= m/2) I “.9 performed. As a result, we show that the pitchfork period
If ¢= /2, the P2 bifurcation is still possible. From H&9) doubling bifurcation is broken and determine specific condi-
this point is located at tions and scaling laws for this phenomena. The map is also
capable of describing the casg nearly equal tav,/2, stud-
61=1+ 5§ (4.10 ied in Ref.[13], and which is known to lead to quasiperiod-
icity. For clarity, we have chosen to focus only on
wWoy= w1/2
Our results are in agreement with previous observations
V. SUMMARY AND DISCUSSION on two tone loss modulation of a GQaser[10,1]] that we
now discuss. Glorieuet al. [11] noted the unfolding of the

There is a substantial amount of rgsearch in n_onl|nea|52 bifurcation transition and examined, experimentally and
systems subjected to secondary sinusoidal modulations. A(ij]- merically, the behavior of a gain functid®, Eq. (3.1

vantageous effects on the system dynamics, such as contnP ey noted tha follows a 55,3 scaling law for small values

of a chaotic trajectory, can occur as a result of this type of
simple perturbations. This is notably appealing for the casé)f 9, but the_n saturates to a constanﬁg&O. We hav_e also
tt)served this—2/3 scaling law experimentally. Using our

of high speed systems, such as semiconductor lasers tha

operate in the GHz regime, where strict time constraints Iimiti’lGn.aIySIS of t_he lwp?rr/fgct t;:furc?t[ondp;pblgng, Vée Tg that
the computations required for theoretical controlling influ-C 1S Proportional toT/5, whereT is defined by Eq(4.8).

ences. Fgg a fixed 6,=<1, T behaves asj, for §, small, but as
As a prelude to investigations of this nature, we have®2 _for Iarg;/er values of &, (specifically ~when
studied a neodymium fiber laser that is operating in the vi-92=O[(é1~1) °]). ComputingG, we obtain the scaling
cinity of its P2 bifurcation point. This is a complex system in 12ws found in[11]. Note that the relatively large factor mul-
that there a number of longitudinal modes operating, twdiPYing & in Eq. (4.8 explains whyd, needs to be quite
polarization eigenstates, and possibly saturable absorptictmall in order to observe th&} effects. Corbalaet al.[10]
effects. However, since its relaxation oscillations are only in2nalyzed the shift of the P2 bifurcation transition as a func-
the kHz regime, we are able to make detailed time and fretion of &, and for a fixeds;. We identify this shift as the
quency domain investigations. In this paper, we have emchange of the limit point ag, increases. This point scales
ployed the diode laser pump in order to modulate the energlike 8,—1=0(85"). If ¢~ /2, the scaling is much smaller,
applied to the laser. The primary driver is arl2o periodic ~ and we have found tha$1—1=0(5§).
component whose amplitude is used as a bifurcation pa- In both [10] and[11], a critical phase is determined for

1E

3L

The solution of this equation is best analyzed in terms o

for small 6.
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which the modification of the unperturbdthat is 5,=0) A

w
bifurcation diagram is minimum as, is increased. They 5JEA—_]1, ijjT(J'Zl,Z), and
found this critical phase close te. In contrast, we determine 0 R
this critical phase to be close to/2. The difference results 112
from the fact that the losses are periodically modulated in EE(;> (A4)
[10,11 and not the pump as in our study. We have found 2(Ao—1)

analytically that the equations for the loss modulated cas
leads to Eq.(4.8) except that the imperfection term
8,8in(¢p— 7/2) is replaced by the teri,cos(p—n/2) Hence,
the imperfection is canceled &= 7. Note that the critical
phase found if10,11] is slightly different froms because of
the effect of damping which is ignored in our analysis.

In [10], the change of the P4 bifurcation point is also
analyzed experimentally. Our experiments on the fiber laser
do not allow for accurate observations but analysis of the, 4 follow a complete orbit in the phase plamey( until we
map is possible. We find that the P4 bifurcation point is Not.q5ch the point
altered by the second tone as is the P2 bifurcation transition.

As a result, the shift of the P4 bifurcation point is simply a X(Sn+1)=Xns1, Y(Sny1)=0. (AB)
linear function ofé&,. In conclusion, a minute/2 drive fre-

quency component plays a major role on the fiber laser dyThe period of the orbit is given b, ;—s, which satisfies
namics at the P2 bifurcation point. This behavior can behe transcendental equation

accurately predicted by analytical fixed point studies of a

?Ne next determine the solution of these equations by the
method of matched asymptotic expansi@®4]. Specifically,

the solution consists of two main contributions correspond-
ing to the silent and active phases of the intensity oscilla-
tions, see Fig. @). We start with the initial condition

X(Sn)=X,<0, Yy(sp)=0 (A5)

map. 1 o1 . 0y .
Sn+17Sn= | Xn— P s_wlsm(wlsn)_ 8_wzsm(w23n+ ®)
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while the change ok after one orbit is obtained from

APPENDIX A: EQUATIONS FOR THE MAP

Xn+1=— exd —&(Sn+1—Sn)]

1
s ( s
Here we formulate the equations of the map from the
pump modulated rate equations of a cldslaser. The 51, . .
method is described in detail for a loss modulated cBss + w_l{s'r'(wlsnu)_exli—8(Sn+1—5n)]5|n(w13n)}
laser in Ref[20]. Below we summarize the main steps of the
analysis for the pump driven case. We first change variables 6y .
in the rate equations by introducing the new varialses, + w—2{5|n(w25n+1+ ¢)—exf —e(Sh+175n)]
andy defined by

X Sin(w;Sy,+ ¢p)}+O(€?) (A8)
w
s=wgt, 1=|E?>=(Ay—1)(1+y), and N=1+ 7Rx.
(A1) Finally, the maximum value of the intensity variabjeis
related tox,, . ; and is given by
Equation(4.2) is then rewritten as maxy)=3x2, . (A9)
X'=—y+6,C0qw;S) + 5,04 wyS+ ) APPENDIX B: PERIOD-TWO SOLUTION
—ex[1+(Ap—1)(1+y)], (A2) The equations for a period-two solution satisfying the two
conditionss,, ,— S,=4mw; * andx,, ,=Xx, are given by
y'=(1+y)x, (A3)

Sni1—Sn=—2X,+ 28101 ISiN(w;S,) + 28w, 1

where X Sin(w,Syt+ @), (B1)
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Xn+1~Xn= — 0101 [SiN(@1Sp41) +SiN(@1Sp)]

— 8w, [ SiN(wySy41+ @) +SIN(@,S,+ @) ],
(B2

Snt4mw; T —Spi1=—2Xns 1+ 28101 1SiN@1Sp 1)
+28,0, 'siN(wy8, 1+ ¢),  (BI)
Xn—Xnt1=— 0101 [SiN(@;S7) +SiN(@1Sp+1)]

— 0,0 [SIN( WSy + ) +SiN(w,Sn 11+ @) ]
(B4)

Comparing Eq(B2) and Eq.(B4) indicates that
8101 [ SIN(@1Sp+1) +SiN(@1Sp) ]+ Spw, ™
X[Sin(wzSp+1+ @) +sif(wys,+¢)]=0  (BY)
and
Xn+1=Xn- (B6)
Adding Eg.(B1) and Eq.(B3) then gives
Xp=— ww[l. (B7)
Then using Eq(B7), we rewrite Eq.(B1) and Eq.(B3) as
Sni1—Sn=27mw; ' +2810;1 " 'SiNw3S)
+28,0; 'siN(wp8y + ),
S Sn1= — 27wy 28101 'SiN 1S4 1)
+28,0; " siN w58y 1+ ¢). (B8)
These equations are two equations for the unknoging

ands,,. With S=w;s, andT= w4(S,+1—S,) — 27, Eq.(B8)
becomes

T=268,SiN(S) +45,sin(3S+ ),

—T=28,SiN(S+T)—48,siM3(S+T)+ ¢]. (B9
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Equation(B9) captures the essential dynamics of the P2 bi-
furcation point.

We are interested in solving Eq®9) for small §, and
for §; near the P2 bifurcation point;=1. Therefore, treat
8, as an imperfection in the bifurcation problem and seek a
solution of the form[25]

T=63 To+ 8,Ta+ - -, (B10)

S=— 7+ 6338+ 5538+ - - . (B11)

We also need to expand the bifurcation parameter as

S1=1+68"A+. .-, (B12)
where A is the new control parameter. Substituting these
expressions into EqB9) leads to a succession of equations
for the unknown coefficients in EQB10) and Eq.(B11).
Analyzing these problems and their solvability conditions
leads to the following results:

S=-3To (B13
whereT, satisfies the following:
2ATo— 5T3+8sin¢—7/2)=0. (B14)

A plot of Ty versusA is shown in Fig. 8 forg=289.91°. This
plot shows that the pitchfork bifurcation is broken. The
lower branch describes the evolution of the P1 orbit while
the upper branch descends towards the limit point. The solu-
tion of Eq. (B14) is analyzed in Sec. lll. If¢p==/2, the
imperfection term in Eq(B14) disappears and the two tone
modulation problem reduces to the perfect bifurcation case.
We may analyze this problem using E&9) with ¢=7/2.

The P2 bifurcation pointd; = 4 is then obtained from the
linearized problem forT,S)=(0,— 7). We find that it is the
root of

54— Spa— 65=0. (B15)
Hence, whers, is small, we have
Spa=1+55. (B16)

[1] F. T. Arecchi, G. L. Lippi, G. P. Puccioni, and J. R. Tredicce, [8] K. Wiesenfeld and B. McNamara, Phys. Rev. Ldf, 13

Opt. Communb51, 308(1984).

(1985.

[2] F. T. Arecchi, R. Meucci, G. Puccioni, and J. Tredicce, Phys. [9] B. Derighetti, M. Ravani, R. Stoop, P. F. Meier, E. Brun, and

Rev. Lett.49, 1217(1984.

[3] V. N. Chizhevsky and S. I. Turovets, Phys. Rev58, 1840

(1994.

[4] V. N. Chizhevsky and P. Glorieux, Phys. Rev.58, R2701

(1995.

R. Badii, Phys. Rev. Lett55, 1746(1985.

[10] R. Corbalan, J. Cortit, A. N. Pisarchik, V. N. Chizhevsky, and
R. Vilaseca, Phys. Rev. A1, 663(1995.

[11] P. Glorieux, C. Lepers, R. Corbalan, J. Cortit, and A. N.
Pisarchik, Opt. Commuri18 309(1995.

[5] Z. Gills, C. Iwata, R. Roy, |. B. Schwartz, and I|. Triandaf, [12] V. N. Chizhevsky and R. Corbalan, Phys. Rev.58 1830

Phys. Rev. Lett69, 3169(1992.
[6] P. Colet and R. Roy, Opt. Letl9, 2056(1994).

[7] P. M. Alsing, A. Gavrielides, V. Kovanis, R. Roy, and K. S.

Thornburg, Jr., Phys. Rev. @ be published

(1996.

[13] Y. Braiman and |. Goldhirsch, Phys. Rev. Le@if, 2545
(1991).

[14] P. Colet and Y. Braiman, Phys. Rev.53, 200 (1996.



56 UNFOLDING OF THE PERIOD-TWO BIFURCATION IN ... 7231

[15] R. Meucci, W. Gadomski, M. Ciofini, and F. T. Arrecchi, [20] I. B. Schwartz and T. Erneux, SIANSoc. Ind. Appl. Math.J.

Phys. Rev. E49, R2528(1994). Appl. Math. 54, 1083(1994).

[16] M. Ciofini, R. Meucci, and F. T. Arecchi, Phys. Rev.52, 94  [21] D. Derozier, S. Bielawski, and P. Glorieux, Opt. Commaa,
(1995. 97 (1991).

[17] S. T. Vohra, L. Fabiny, and F. Bucholtz, Phys. Rev. L&8, [22] S. Bielawski, D. Derozier, and P. Glorieux, Phys. Rev4®&,
65 (1995. 2811(1992.

[18] The fiber laser undergoes a supercritical pitchfork bifurcation[23] D. Dangoisse, J. C. Celet, and P. Glorieux, Phys. ReG6E
in which theP1 fixed point becomes unstable and two stable 1396 (1997).
symmetric fixed points appear. See S. H. Strogitmlinear  [24] J. Kevorkian and J. D. Col&®erturbation Methods in Applied
Dynamics and ChaogAddison-Wesley, Reading, MA, 1994 Mathematics Applied Mathematical Sciences Vol. 34
p. 55. (Springer-Verlag, Berlin, 1984

[19] B. Derighetti, M. Ravani, R. Stoop, P. F. Meier, E. Brun, and [25] B. J. Matkowsky and E. L. Reiss, SIAMSoc. Ind. Appl.
R. Badii, Phys. Rev. Lett55, 1746(1985. Math) J. Appl. Math.33, 230(1977.



